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A model of the two-velocity motion of a barotropic two-phase medium is obtained in the form of a 

system of parabolic equations. The results of a numerical implementation of the model, as applied to 

the discharge of effervescing water, are in good agreement with experiment and with calculated data 

obtained elsewhere. 

It is well known that the fundamental system of equations for the two-fluid model of two-phase 
flow is hyperbolic. Different physical assumptions lead to the loss of the hyperbolic form of the 
system. This question has been dealt with in the number of papers [l-S] in which methods for 
compensating for the non-hyperbolic form of the equations are considered which lead to a 
significant contraction of its domain. As a rule, it is not possible to achieve complete 
elimination of the non-hyperbolic form successfully. A detailed analysis of this problem is 
presented in [4]. The various algorithmic procedures, which suppress the development of 
instability in the solution of a non-hyperbolic system, can lead to inestimable numerical 
diffusion. The source of the error lies in the hypothesis regarding the equality of the pressures 
of the phases and it therefore appears natural to turn to a model with unequal pressures [5]. 
However, this model cannot be implemented in practice due to the lack of reliable information 
for constructing the system of closed relationships for determining the coefficients and the 
right-hand sides of the system of basic equations for this model. 

We shall demonstrate the possibility of obtaining a model of a two-phase barotropic flow by 
changing the type of equations of the initial system when it ceases to be hyperbolic. For this 
purpose, we use the procedure of the stochastic approximation of a fluctuating parameter and 
subsequent averaging of the equations over its realizations. 

l. The generally accepted operators for averaging the equations of two-phase flows over a 
number of realizations, space and time [l] are trivial in the sense that the statistical properties 
of the parameters which are employed in these operators only determine the means [6]. 

We shall consider an approach which makes use of the non-trivial statistical properties of the 
parameters of two-phase media. Bearing in mind that space-time fluctuations may exist in 
flows, it is possible to use a statistical-averaging procedure which takes account of the stochas- 
tic nature of the fluctuating parameters. We know (see [7], for example) that, in many physical 
problems, processes involving a change in the parameters with time can be treated in the 
approximation of delta-correlated random processes. In particular, when applied to vapour- 
liquid flows, this approximation of the fluctuating parameters has a quite explicit physical 
nature: the spontaneous processes of the formation of vapour bubbles and their destruction, 
and the formation of films and slugs can be treated as jumps in the statistical mean values of 
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the parameters for the delta-correlated process under consideration. In the case of values of 
flow parameters which are distributed in time as the result of the simultaneous action of a set 
of factors, it may be an acceptable approximation to assume that the fluctuations have a 
Gaussian form. This approximation is extensively used, for example, when investigating 
t~ulent flows f&-10]. 

The matrix form of the system of initial hyperbolic equations iu the approximation of 
barotropic phases is [l] 

& +o~*AJ$ -~T’(u, - BiCi)px +pi’BiAwz* + Uih, m f&+4 (1.4) 

where cp, p,p, h and u are, respectively, the volume concentration, deusity, pressure, en~lpy 
and velocity of the phases, u is the velocity of propagation of acoustic perturbations in a phase, 
x is a coordinate, t is the time i = 1,2 (1 refers to the liquid phase and 2 refers to the gas phase), 
II are the right-hand sides of the equations, and cp, =l-R. The following notation was 
adopted (the ~tio~ is over the index f) 

As a cons~uence of the statistical nature of the processes in two-phase flows, there are 
fiuctuations in the velocities of the liquid and gas phases. We shall represent the velocities of 
the phases Q, as rsudfom functions which are equal to the sum of a mean and a fluctuating term 

Assusuiug that the ~uc~ations in the velocities of the phases can be described as a delta- 
correlated Gaussian process, we introduce the correlation function 



A model of the two-velocity motion of a barotropic two-phase medium 69 

where of is the variance of the velocity y. On averaging the equations of System (l.l)-(1.4) 
over samples of the ran&m process U, and expanding the statistical non-linearities which arise 
here using the Furutsu-Novikov formula and taking account of the correlation (U), we obtain 
a system of equations for the mean values of the required parameters vi, p, Cpi and h, 

(ui), +(Ui)(Ui), -2af(ui)n +PT’(P), =(“i) (1.6) 

(P), +(4)4 + B,(G)(P), -%(F;)(P), +Bi(A”)((P2), - (1.7) 

-ZBi1A02(Ip2)n -~~C((PZ))‘I=(~~) 

((92), +(cP2)(1-(Di))(u2)x -(Di>(1-(cP2))(u~)x + (1.8) 

+G,F’(Au)(P), -G,‘“&‘(p), +((~~)-(D~)(A~))((Pz), -2(o: -(Q>Ao’)(Ip2), + 

+ 2G,“Ki((Cp2)X )’ = (II,) 

(h,),+pT'(Ai)Bi -p7'((Ui)-Bi(ci))(P)x + 

+p~1~i(A~>(~2), +('Ui)(I+)x+2Pf1(~iL -B,F;,)b),- 

-2py’Bi lIaa2 (CPZ), - Hi!((p2),)21-20T(hi), =tni+4> 

(1.9) 

Averaging of Eqs (l.l)-(1.4) over the stochastic parameter vi therefore generates a 
parabolic system. In particular, averaging of the total derivative of the velocity over its samples 
generates the Burgers-Hopf operator for the mean value of the velocity so that Eqs (1.6) are 
analogous to a system of the Burgers-Hopf type. The occurrence of the factors at, which have 
the dimensions of kinematic viscosity, in the second derivatives is associated with the method 
of “viscosity” in gas dynamics [ll]. It is characteristic that the velocities of the phases, which 
are factors of the first spatial derivatives of the pressure, are replaced in the second derivatives 
by the variances a:. Similarly, the slip (u,) - (u,) is replaced by the “slip” of the corresponding 
variances ai -a:. 

Considerable difficulties arise when investigating the correctness conditions and the proper- 
ties of the solutions of boundary-value problems for non-linear parabolic equations of the type 
(1.6)-(1.9) and, at the present time, simpler systems of two equations with a “viscosity” of the 
Burgers-Hopf type have been insufficiently studied [ll]. 

2 In order to investigate the possibilities of the proposed model, we shall compare the 
results of its numerical integration with experiment and with the results obtained using tested 
models. In this case, it is necessary to supplement system (1.6)-(1.9) with initial and boundary 
conditions and closing relationships which are determined by the formulation of the actual 
problem. 

For system (1.6)-(1.9), we will formulate the problem [12, 131 of the discharge of an 
effervescing liquid. A tube of length L and constant cross-section area, closed at both ends by 
membranes, is filled with homogeneous water which has been underheated to the saturation 
temperature T, and has a pressure p0 and is at a temperature T,,, d T&J. At the instant of time 
t = 0, the membranes at one of the ends is fractured and, when t > 0, the effervescing water 
discharges into the surrounding medium with a pressure p_, where p_*pO. The flow is 
assumed to be adiabatic and frictional forces on the walls of the channel are neglected. 

The initial conditions for the homogeneous liquid have the form 

I = 0: p(x, 0) = po, T,(x, 0) = Tlo 

qw,Q=l, cpz(x,O)=O 

(2.1) 
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The boundary condition at the closed end of the tube is the no-flow condition, and, at the 
open end, equality of the pressures at the section of the tube and in the surrounding medium 

x=0: u=o; n=L: p=poo (2.2) 

System (1.6)-(1.9) with the boundary conditions (2.1) and (2.2) has to be closed with the 
equations of state of the phases and the relations for the interphase heat exchange and the 
intensity of the phase transition. 

The intensity of interphase heat exchange under bubbling conditions is determined using a 
formula [14] which takes account of slip and effects associated with the thermal expansion of 
the bubbles and convective heat transfer 

N"lj =Nu,+1,13Pe2 
1 6 Ja0V63 

13Ja3*3+Pe’*s -31Ja4V3+Pe2 I 

Nuo =3,9*a[l+f(&)lil+-&] 

where Ja and Pe are the Jakob modulus and the Peclet number, Pe = dl u, - u, la;‘, respect - 
ively, where a, is the thermal diffusivity of water. The subscript j indicates that a quantity 
refers to the interphase boundary. The well-known approximation in [12] is used for the 
diameter of a bubble d. 

The thermal fluxes per unit volume in the case of interphase heat exchange are 

qji = qjdj = Uji(Tj - q)Aj 

where A is the area of the interphase surface, referred to unit of volume and a is the heat 
transfer coefficient. Under bubbling conditions, the vapour phase is close to a state of satura- 
tion (q = T,) and the thermal flux from the interphase surface to the vapour is therefore small, 
and it can be assumed that the interphase heat exchange is determined by the thermal flux 

qjl = ajl CT, - T iAj 

In the case of bubbling conditions, the area of the interphase surface can be represented by 
the relation [15] 

We then obtain 

(2.3) 

where h, is the thermal conductivity of water. 
The intensity of the phase transition Q, when there is no interphase friction and no thermal 

and mechanical effect of the tube walls, has the form 

where r is the heat of the phase transition. The velocity of motion of the interphase boundary, 
which occurs on the right-hand sides of the equations of system (1.6)-(1.9), is determined using 
the formula in [16] 

z)j =0.5(u, +u,) (2.5) 

The system of equations (1.6)-(1.9) with the boundary conditions (2.1) and (2.2) and the 
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closure relationships (2.3)-(2.5) was integrated numerically using a Lax-Wendroff difference 
scheme with an artificial viscosity which takes account of the effects of non-linearities [17]. The 
condition for this scheme to be stable 

([I(+ 5) Ar/Ax < (1 + b* / 4)“* - b / 2 (2.6) 

is more restrictive than the Courant condition, where ii is the “frozen” velocity of sound, b is a 
dimensionless constant of the order of unity and Ax, At are the spatial and time steps, 
respectively. Since the numerical solutions depend on the parameters of, it is natural to 
associate them with the stability condition (2.6) and the necessary condition for the approxi- 
mation of the parabolic system [ll] 

(AX)* I (2&t) = a! (2.7) 

The indeterminacy in expression (2.7) is removable if the inequality ai >c_$ is taken into 
account. Then, for fixed Ax, the value of oi on the right-hand side of (2.7) corresponds to a 
smaller time step, which is essential at the initial stages of the effervescence when the flow has a 
highly non-equilibrium character. On putting b =oi/af (q it 0), we obtain the necessary 
conditions for the choice of the quantities AX and &, taking account of the values of the para- 
meters of, Constraints on the integration time step [12] were also taken account of in the initial 
stages of the effervescence. 

The calculated and experimental pressure and volume vapour content in a fixed cross- 
section (x = 1.39 m from the closed end) when a tube of length L = 4.1 m filled with water at a 
pressure p,, = 6.9 MPa was depressurized are shown in Fig. 1. The notation adopted here is: 
l-experiment [18], 2-the result from [12] when 7” = 515 K, n, = 0.5 x 10’ rnF3 ()20 is the initial 
number of bubbles), 3nur result when x= 1.39 m, p,, 
o: = 25, and 4-our result when a: = 60 and o: = 75. 

=6.9 MPa, T,=515 K, of =20, and 

It is seen that, in accordance with the prediction in [13] regarding the effect of the relative 
motion of the phases, making allowance for this factor produces better agreement between the 
calculated data 3 and 4 and the experimental data compared with the model in [12]. The values 
o: = 20 and CJ~ = 25 are close to being optimal in the sense of the stability of the scheme and 
the volume of the calculations: a reduction in the values of ot leads to a breakdown of the 
stability of the scheme with respect to the time step and to the degeneration of the parabolic 
system. An increase in OF is associated with an unjustified reduction in the time step and an 
increase in the volume of the calculations. 

Fig. 1. 
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